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Abstract 
 

 Time-to-failure (TTF) data, also referred to as life data, are investigated across a wide 

range of scientific disciplines and collected mainly through scientific experiments with the main 

objective of predicting performance in service conditions. Generally, fatigue life data are times 

measured in cycles until complete fracture of a material in response to a cyclical loading. Fatigue 

life data have large non-uniform variation, which is often overlooked or not rigorously 

investigated when developing predictive life models.  

This research develops a statistical model to capture dispersion in fatigue life data which 

are used to extend deterministic life models into probabilistic life models. Additionally, a 

predictive life model is developed using failure-time regression methods. The predictive life and 

dispersion models are investigated as dual-response using nonparametric methods. After model 

adequacy is examined, a Bayesian extension and other applications of this model are discussed. 
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CAPTURING UNCERTAINTY IN FATIGUE LIFE DATA 

1.  Introduction 
 

1.1 Background 
 
 Time-to-failure (TTF) data, also referred to as life data, are values measuring the period 

from some time initiation until a defined end of an component’s life. The data can be measured 

in standard units of time, ranging all the way up to years, or quantities specific to the application 

of interest, such as miles for automobile parts. The initiation of the time collection is commonly 

the beginning of testing for a previously untested product or structure, but may not be possible in 

the cases of observable data, especially with organic subjects. The end of time collection must be 

a previously and commonly defined “failure”, generally when a component or structure is 

completely unable to perform its intended function.  

 Life data are investigated across a wide range of disciplines, such as reliability in 

engineering, survival analysis in biology, and fatigue in mechanical sciences. In reliability, 

developers can modify designs to increase product or system life, establish inspection and 

maintenance schedules, and predict performance in variable operating environments. In survival 

analysis, analysts can quantify the impact of genetic and environmental factors on health, and 

determine pricing structures for insurance policies. In fatigue, engineers can characterize metal 

alloys, quantify material responses to testing conditions, and develop inferences for material 

performance in a larger system. 

 The majority of life data are collected through scientific experiments with testing 

environments emulating normal operating conditions. The main test objective is to predict 

product or system performance in service conditions. Other specific goals of life testing are to 
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identify the most important variables in terms of impact on failure, to accurately monitor 

structural degradation, and to develop diagnostic tools for estimating product or material 

integrity (Mancini & Volta, 1980). With these objectives under consideration, life models are 

developed, often emphasizing design factors influencing the quality of the product or the stress 

and environmental conditions of the test (Saunders, 2007; Mancini & Volta, 1980).  

 Prior to testing, experimenters and experts must discuss and agree upon how results can 

lend information to conclusions or inferences about the product or system in service conditions. 

This may present a challenge, however, as sample sizes are frequently small, have few statistical 

replications, and have test and processing conditions which do not always accurately represent 

service conditions, and consequently, may lead to questionable conclusions about structure or 

system performance regardless of statistical validity (Little & Jebe, 1975). Hence, there is a 

prevalent need for analysts who can identify failure causes and construct mathematical life 

models for these failures (Saunders, 2007). 

As detailed by Ebeling (1997), poorly designed testing and unsound service performance 

inferences have resulted in an alarming number of system failures with safety and economic 

impacts: 

 

- crash of Lockheed Constellation aircraft killing four crew members in 1946; 

- recall of 7.5 million Firestone steel-belted radials in 1972; 

- recall of Ford Pinto after numerous reported deaths in 1978; 

- collapse of the Hartford Civic Center Coliseum’s roof in 1978; 

- partial meltdown of nuclear reactor on Three Mile Island in 1979; 

- collapse of Manus River Bridge killing three in 1983; or the 



3 
 

- explosion of the space shuttle Challenger killing the entire crew in 1986. 

 

Failures for these large and complex systems stem from a number of sources, but may not 

be readily identifiable or commonly accepted among investigative experts. However, sometimes 

the failure is the result of a fracture in a specific material within the system. Ebeling discusses 

the collapse of the Tacoma Narrows Bridge in the Puget Sound in 1940; oscillations in metal 

supports from vibrations of high winds over the five-month period after construction caused the 

bridge fall (1997). Numerous failures of airfcraft, transporters, and other civil structures have 

been attributed to fractures in degraded construction materials (Swanson, 1974). 

In material sciences and mechanical engineering, fatigue refers to “the special behavior 

pattern exhibited by materials in response to cyclic loading” (Conway & Sjodahl, 1991, p. 1). As 

cracks or degradation in these materials cause failures in larger systems, such as aircraft panels, 

experiments are designed to examine fatigue characteristics. The resulting data from these 

fatigue experiments are analyzed to gain understanding of how a particular material would 

behave as part of a system in service conditions. Fatigue life of the material, time until complete 

fracture, is frequently the focus. Deterministic life equations are developed with the goal of 

predicting the life of a given material under specific service conditions.  

Several parameters can be investigated in fatigue testing. Factors such as loading, 

specimen geometry, material behavior, and thermal or chemical conditions are frequently of 

consideration (Little & Jebe, 1975). These factors are quantified and investigated in relation to 

foundational fatigue concepts such as stress/strain amplitude or cycle, elasticity, plasticity, and 

cyclic softening and hardening (Conway & Sjodahl, 1991). 
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Although the scope and objectives vary between fatigue experiments, general testing 

considerations are applicable, as outlined by Swanson (1974): 

 

- clearly defined testing objectives; 

- consideration of processing effects and geometric discontinuities in testing 

specimens; 

- consideration of cost factors; 

- consideration of other limiting constraints; 

- identification of environmental variables, both control and noise; 

- clear measurement of effect of variables on fatigue behavior; 

- randomization to reduce bias; 

- consistency in testing preparation and execution; 

- rigorous analysis and comprehensive reporting of results; or 

- identification of sources of error and uncertainty in data. 

 

 Error and uncertainty play a role in the development of fatigue and other life models, but 

their importance is often under-emphasized. Thacker et al. (2001) have highlighted the need for 

greater consideration of uncertainty and error in probabilistic engineering analysis by first 

establishing their difference; uncertainty is inherent in statistical analysis, while errors are the 

result of the analytic process stemming from several sources, including insufficient data, 

measurement, incorrect distribution or transformation selection, or mathematical approximation. 

While uncertainty can be incorporated in modeling, errors should be identified and reduced. 
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Unfortunately, the uncertainty of fatigue models is often not investigated rigorously (Conway & 

Sjodahl, 1991). 

 

1.2 Research Objectives 

 The goal of this research is capturing variance in fatigue-life data by developing a 

dispersion model which can be used to extend deterministic life models into probabilistic life 

models. This is accomplished through the use of regression modeling with the median absolute 

deviation of fatigue life as the response and examination of its relationship to predictive 

variables, specifically temperature and tensile stress. This relationship is established and further 

investigated using statistical testing methods.  

 Additionally, a predictive life model including the same predictive variables is 

developed using failure-time regression methods. This first approximation serves as an initial 

deterministic model which can later be replaced by a non-empirical model developed by subject 

matter experts.  

The life and dispersion models are investigated together as dual-response using 

nonparametric methods. After model adequacy is examined, a Bayesian extension and other 

applications of this model are discussed. 

 

1.3 Outline 

Section 2 presents a literature review for this work including modeling efforts for fatigue 

life and reliability data, statistical regression, and uncertainty modeling approaches. Section 3 

provides the methodology to develop the life and dispersion models for the fatigue data. Section 
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4 gives analysis results and extensions for our dual-response model, and Section 5 discusses 

conclusions from this investigation and recommendations for future work. 
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2.  Literature Review 
 

2.1 Modeling of Fatigue Life Data 

The most widely used mathematical models in fatigue analysis are fitted equations to the 

S-N curve, where the independent variable S is an observable stress index and the dependent 

variable N is the number of cycles until reported failure of the tested specimen (Little & Jebe, 

1975). These models allow for inferences in fatigue metrics, including predicted failure 

proportion and fatigue endurance. Figure 1 provides an example of an S-N curve. 

 

Figure 1. S-N curve example 

 

 The most simplified fatigue models are generalized linear models incorporating the 

pattern on the S-N curve. Examples of these models are 

  

 log𝑁 = 𝐴0 + 𝐴1 log 𝑆        (1) 

 𝑁 = 𝐴0 + 𝐴1 log 𝑆         (2) 

 log𝑁 = 𝐴0 + 𝐴1𝑆         (3) 
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where the A-parameters are usually determined using a least squares estimation method (Conway 

& Sjodahl, 1991). 

 These equations, and other fatigue life models, have been extended to include other 

explanatory factors, additional response variables, and any relationships between. Rao et al. 

(1988) modified the cyclical fatigue testing of alloy Inconel 617 to include tensile and 

compression hold times as predictive variables, in addition to strain rate. The work investigated 

the influence of these variables on fatigue life and other reported responses in the specimens, 

including deformation behaviors and crack initiation. Additionally, the effects of hold time 

variations, such as tensile-only, compression-only, and symmetric, were noted in experiment 

results (Rao et al., 1988). 

Altus and Herzage (1994) expanded the S-N relationship to consider bi-axial testing, as 

opposed to uni-axial tension and compression. The study allowed for a richer understanding of 

material behavior without the use of additional test variables and established numerical 

relationships to the uni-axial testing models. Furthermore, a cumulative damage function was 

incorporated into prediction methods (Altus & Herszage, 1995). 

Popelar (1997) developed a fatigue model including the factors of temperature, elasticity, 

and creep. The model was used to predict fatigue life of solder joints in flip chips, which was 

incorporated in the determination of optimal design parameters settings in the larger reliability 

study. General validation techniques for parametric flip chip testing were also discussed and 

extended (Popelar, 1997). 

Several fatigue models are developed using the data resulting from the investigator’s 

designed tests. However, fatigue life models can be determined using theoretical and 
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approximation methods, often when the model is a piece of a larger and more complex reliability 

study. Soares and Garbatov (1999) applied reliability-based techniques to welded joints in the 

shells of tankers by assessing fatigue damage as part of an overall reliability model. Without 

fatigue testing, approximate fatigue stresses and loadings were calculated from system-wide 

factors. Established methods, such as Paris-Erdogan equations, were applied to develop the 

theoretical fatigue life and the system reliability models (Soares & Garbatov, 1999). 

The majority of fatigue life models in literature are deterministic equations which do not 

quantify uncertainty or risk for life predictions. Lodeby et al. (1999) developed a methodology 

for identifying sources of variation in life models, including errors stemming from random and 

systematic processes. Random errors were assumed to be normally distributed, while systematic 

errors were considered constant in repeated measurements or calculations. The correlation 

between the sources of variation was examined and total variation for any observation was 

determined using the Gauss Approximation formula (Lodeby et al., 1999). 

Fatigue and other life models can be extended into cumulative damage models, which 

quantify degradation and wear of the material or system of interest. These models are useful for 

creating inspection schedules, developing repair policies, and monitoring life cycle costs 

(Bogdanoff & Kozin, 1985). This work developed probabilistic modeling techniques using 

discrete-time Markov chains with defined states of degradation and determined probabilities of 

transition from one state to the next; these models were extended to include continuous-time 

Markov chains, non-stationary state transition probabilities, and identification and incorporation 

of major sources of variability (Bogdanoff & Kozin, 1985). 

 These works highlight the increase of statistical rigor in the development of fatigue life 

model outlined in the literature. However, regression analysis remains the most widely used 
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statistical technique for analyzing fatigue data and developing deterministic fatigue prediction 

models. 

 

2.2 Modeling with Regression 

Regression modeling relates response variable behavior as a function of some set of 

predictor variable(s) settings. Such models aid in description, control, and prediction (Kutner et 

al., 2004). Consider the case of one response 𝑌 and p-1 predictor variables 𝑋1, … ,𝑋𝑝−1. A first-

order regression model is: 

 

 𝑌𝑖 =  𝛽0 +  ∑ 𝛽𝑗𝑋𝑖𝑗
𝑝−1
𝑗=1 +  𝜀𝑖        (4) 

  

where the  𝛽’s are parameters, the 𝜀𝑖 are independent and normally distributed with an expected 

value of 0 and a constant variance σ2, and assumes the effect of 𝑋𝑖on the expected response does 

not depend on the level of all other 𝑋’s, for all i. Regression models can also include interaction 

terms (𝑋𝑖𝑗𝑋𝑖ℎ), second-order terms (𝑋𝑖𝑗2 ), or other higher-order functions of 𝑋’s.  

The most widely used method for estimating the model coefficients is the  method of 

ordinary least squares, which determines the 𝛽-parameters by finding the values which minimize 

the sum of squared errors (𝑒𝑖2) expressed by: 

 

 ∑ 𝑒𝑖2𝑛
𝑖=1 = ∑ (𝑌𝚤� − 𝑌𝑖)2𝑛

𝑖=1         (5) 

 

where 𝑌𝚤�  is the fitted value of the model for a specific set of 𝛽-parameters (Kutner et al., 2004). 

 Linear first-order regression models can also be expressed in matrix form: 
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 𝐘 = 𝐗𝛃 + 𝛆           (6) 

 

where 𝐘 is an n x 1 vector of responses, 𝛃 is an p x 1 vector of parameters, 𝐗 is an n x p vector of 

constants, and 𝛆 is an n x 1 vector of independent normal random variables with an expected 

value of zero and a diagonal covariance matrix with a constant variance as every element on the 

main diagonal.  Then the ordinary least squares estimator of the parameters is given by 

 

 𝐛 = (𝐗′𝐗)−𝟏𝐗′𝐘.         (7) 

 

 The assumptions on the error terms are important to regression analysis; statistical tests 

on regression coefficients and inferences applied to any predicted value are based upon the error 

term assumptions. Residual analysis is focused on the assessment of error term assumptions and 

modifications used to ensure assumptions are sufficiently valid; diagnostic tests and remedial 

measures have been developed for regression to detect when one or more of the assumptions 

above are violated (Kutner et al., 2004).  

 Initial residual analysis is often done visually, by creating plots of the residuals against 

the fitted values of the model (Montgomery et al., 2012). Other, sometimes more useful plots in 

residual analysis include using other forms of the residual including studentized and PRESS, or 

plotting these residuals against predictive variables (Kutner et al., 2004). If the assumption of 

constant variance is violated, there will be observable trends on these plots, as opposed to 

random scatter. However, these graphical methods are mostly subjective. 
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 The most widely used formal test for non-constant variance is the Breusch-Pagan test. 

This test requires the regression of squared residuals on the same predictive variables used in the 

initial model with a test statistic ratio following a chi-square distribution (Breusch & Pagan, 

1979). This approach was extended to include a test with a relaxation on the normality 

assumption of the error terms in regression, in addition to estimation of error terms when the 

constant variance assumption has been violated (White, 1980). 

 Several model modifications and remedial measures have been presented in the field of 

statistical regression when the assumption of constant variance has been violated. Most involve a 

transformation of the response variable and some include a simultaneous transformation on 

predictive variables (Kutner et al., 2004). Often this transformation on the response falls into the 

family of power transformations, and can be automatically identified computationally (Box & 

Cox, 1964). 

 Although transformations of the response variable are used to remediate problems due to 

non-constant variance, subsequent formal testing must occur to gauge the effectiveness of the 

transformation. Specific tests have been developed for log-transformed data (Bartlett & Kendall, 

1946). This work also develops and explores statistical techniques regarding other model 

assumptions after data transformation. 

Regression has been used for model building across a wide range of disciplines (see 

Montgomery et al., 2012; Kutner et al., 2004), and has been incorporated into the field of 

reliability engineering for developing life models of products or systems with increasing 

complexity. 
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2.3 Modeling with Failure-Time Regression 

Frequently with fatigue or reliability testing, analysts wish to use a parametric 

distribution to describe failure processes in order to generate more flexibility in the inferences 

and predictions about their modeled product. These location-scale (or log-location-scale) 

distributions are derived mathematically and must have sufficient ability to describe the failure 

or reliability of the tested component or system (Ebeling, 1997). Weibull, lognormal, and normal 

are examples of such distributions containing two or more parameters. 

The majority of data sets widely used in reliability academia contain response failure 

times from constant testing conditions. For these models, the location and scale parameters are 

constant values determined by maximum likelihood methods. However, when predictor variables 

such as thermal and physical conditions have multiple levels, the distributional parameters can be 

expressed as functions of these explanatory variables. As a result, model inferences are 

conditional on fixed, observed values of the predictive variables (Meeker & Escobar, 1998). 

Often in life and reliability experiments, it is necessary, due to time and cost 

considerations, to terminate a test before the component or system has reached its failure state. 

This reported data is designated as right censored and requires special considerations during 

analysis. Maximum likelihood methods can account for this data in linear regression (Miller & 

Halpern, 1982) and in failure-time regression (Meeker & Escobar, 1998). 

Similar to normal regression, failure-time regression models have assumptions and 

diagnostics, which vary with the model chosen. For example, the errors terms may not have 

constant variance as is normal regression. This can be incorporated into the model with a scale 

parameter expressed as a function of the explanatory variables (Meeker & Escobar, 1998). 
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However, these efforts to model dispersion in reliability or life data may not be sufficient, and 

more rigorous methods have been explored. 

 

2.4 Modeling of Dispersion 

 In addition to statistical efforts for measuring central tendency of data, such as in 

predictive life equations, data dispersion may require separate modeling efforts. The estimation 

of these functions are a form of statistical regression, but have not had the wealth of literature 

and research dedicated to it as with mean response functions. As with regression on means, the 

intent is to capture variance as a function of predictors. Several techniques have been established 

for variance function estimation after the development of a mean function, including maximum 

and pseudo likelihood, weighted residual, logarithmic method, Rodbard, and Sadler-Smith 

(Carroll & Ruppert, 1988). 

Often, mean and variance functions are developed simultaneously. With the presence of 

replicates at design points spanning the design space, the variance of the response can be 

modeled using a log-linear equation, which does not produce serious violations of regression 

assumptions (Myers & Montgomery, 1995; Bartlett & Kendall, 1946). The log-linear parameters 

are estimated using maximum likelihood methods and improved algorithms for this estimation 

are present in literature (Aitken, 1987). 

  The log-linear variance model uses a separate criterion for the detection of and 

consequent need to capture non-constant variance across the design space. This criterion is a 

specific application of the likelihood ratio test, where the regression model with assumed 

constant variance serves as the null model, and the model with a separate equation for the 

variance of the response serves as the alternative model (Myers & Montgomery, 1995). 
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The idea of dual response mean and variance model estimation is not limited to additive 

variance functions. Multiplicative variance models have been developed using maximum 

likelihood methods, with a simpler form of the likelihood ratio test, and have been shown to 

produce improved parameter estimations for both functions (Harvey, 1976). Furthermore, it is 

has been shown both functions can be generalized linear models with simplified likelihood 

equations and estimation algorithms having good convergence properties (Smyth, 1989). 

 If the data do not contain replicates at design points, alternate techniques for variance 

modeling have been presented in literature. “Near-neighbor” observations in the design space 

can be binned together to estimate variance at a mean predictive level, which can be used in a 

regression model for the estimated variance separately (Montgomery et al., 2012). Box and 

Meyer (1986) established data pooling techniques in a two-level experiment without replicates. 

This technique was further expanded using maximum likelihood estimation methods for 

parameter identification in the selected model and applied to an experimental design for truck 

leaf springs (Nair & Pregibon, 1988). 

 The presented methods require the development of a model for the mean response prior 

to any variance modeling. However, it has been shown the development of a variance model is 

possible without a known mean function in both parametric regression (Hall & Carroll, 1988) 

and non-parametric (Wang et al., 2008) with further calculations and assumptions. 

 A specific quality engineering application regarding variance modeling which has 

received significant attention in academic literature is the Taguchi analysis. This approach seeks 

to reduce process variance in the presence of noise variables, while ensuring robust product 

quality by setting target values for the product and maximizing a signal-to-noise ratio (SNR). 

The Taguchi SNR response function aims at incorporating both mean and variance response 
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measures. This methodology contends experimental product design is more impactful in 

robustness than on-line control. The Taguchi analysis is a form of product optimization 

(Taguchi, 1987). 

 Although many statisticians have criticized the Taguchi approach, others have sought to 

incorporate the methods into more traditional dual-response modeling approaches (Vining & 

Myers, 1990). This approach achieves the goals outlined by Taguchi while incorporating a more 

statistically rigorous methodology, which was further extended to a more efficient and simpler 

optimization procedure (Lin & Tu, 1995).  

 

2.5 Nonparametric Statistical Methods 

 Statistical modeling and testing methods common in applied statistics literature are based 

on parametric assumptions, such as the linear regression and failure-time regression approaches 

previously discussed. Other common parametric techniques include t-tests, F-tests, and ANOVA, 

among several others. 

 Nonparametric methods are a discipline within the statistical field which has developed 

techniques not purely based upon parametric assumptions. These include modeling methods such 

as localized regression and splines, and sampling methods such jackknifing and bootstrapping 

(Krishnaiah & Sen, 1984). 

 Hypothesis testing remains the major focal point of nonparametric statistics. For 

example, the nonparametric counterparts for the paired t-test are the Wilcoxen Signed Rank Test, 

whose test statistic is calculated using the ranks of the observations, and Fisher’s Sign Test, 

whose test statistic is calculated using the signs of the observations. Rejection regions for these 

tests are based upon combinatorics, and the tests’ theoretical underpinnings are based upon 
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random samples being equal in distribution to consequent ranked samples (Krishnaiah & Sen, 

1984). 

 Other nonparametric techniques have parametric counterparts including two-sample 

location tests Wilcoxen Rank Sum/Mann-Whitney U (t-test for difference of means), Kruskal-

Wallis/Friedman (ANOVA), and Spearman rank correlation (Pearson correlation) (Krishnaiah & 

Sen, 1984). 

 

2.6 Bayesian Statistical Methods 

 The most common statistical methods, both parametric and nonparametric, are rooted in 

the frequentist approach, which has developed methods for approximating population parameters 

that cannot be truly known by only using observed data in parameter calculations. Frequentist 

statistics employ hypothesis testing controlling for Type I errors to give a concrete conclusion to 

answer scientific questions. 

 Bayesian statistical inference uses the laws of probability to model all uncertainty in any 

statistical method. In contrast to the frequentist approach, Bayesian methods incorporate prior 

information from a subject matter expert, in addition to the observed data. Additionally, 

significant tests and intervals about parameter values are based upon posterior probability 

distributions, often developed using Markov Chain Monte Carlo (MCMC) simulation 

(Christensen et al., 2011). 

 Bayesian methods focus primarily on predictive capability of statistical models, as 

opposed to inferences about the parameters themselves. Despite differing fundamentally from 

frequentist methods, Bayesian statistics include the majority of methods of frequentist statistics, 
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including parametric and nonparametric testing, linear regression, and failure-time regression 

(Christensen et al., 2011). 
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3.  Methodology 

 

3.1 Notation 

The specific notation used in the subsequent discussion is summarized in Table 1. 
 

Table 1. Notation used. 

  
 
 

3.2 Data  

The data analyzed are fatigue test data of titanium alloy Ti 6-4, where the life (𝑇𝑗) is 

measured in cycles until complete fracture. One-hundred eighty-six observations were collected 

using -1 stress ratio, no compressive or tensile hold times, and two predictive variables, 

temperature (𝑋1, measured in degrees Fahrenheit) and tensile stress (𝑋2, measured in thousand-

pounds-per-square-inch, or ksi). Forty-three observations are right censored at 10,000,000 

cycles. Testing is conducted at 46 design points, 29 of which have replicates varying from 2 runs 

to 13 runs. 

Table 2 below provides all design settings included in the data. Shaded rows represent 

design settings used in the dispersion model. 

T i Cycles-to-failure of the i -th observation

T nk Cycles-to-failure of the n-th replicate at the k -the design point

Y k Median absolute deviation of  replicated observations at the k -the design point

X k1 Temperature (Fahrenheit) level at the  k -the design point in the dispersion model

X i1 Temperature (Fahrenheit) level at the i -th observation in the life model

X k2 Tensile stress (ksi) level at the  k-the design point in the dispersion model

X i2 Tensile stress (ksi) level at the i-th observation in the life model
β Population parameter in life model
λ Population parameter in dispersion model
μ Distributional location parameter
σ Distributional scale parameter
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Table 2. Replications by design setting. 

 

 

Temperature (F) Stress (ksi) Uncensored Censored
69.9993 50 2 5
69.9993 55 1 1
69.9993 60 7 0
69.9993 65 6 0
69.9993 70 6 0
69.9993 80 3 0
69.9993 120 1 0
69.9993 130 1 0
69.9993 135 2 0
69.9993 140 2 0
69.9993 145 1 0
69.9993 150 1 0
69.9993 160 1 0
399.998 30 2 6
399.998 35 3 4
399.998 38 1 0
399.998 40 6 4
399.998 45 3 3
399.998 50 11 0
399.998 55 4 0
399.998 60 11 0
399.998 70 3 0
399.998 80 1 0
399.998 85 1 0
399.998 90 2 0
399.998 100 4 0
399.998 105 1 0
399.998 110 2 0

800 25 0 7
800 26 0 2
800 30 7 6
800 35 8 3
800 36 1 0
800 37 1 0
800 40 9 2
800 45 3 0
800 46 1 0
800 50 13 0
800 60 1 0
800 70 1 0
800 75 1 0
800 77 1 0
800 80 2 0
800 85 1 0
800 90 2 0
800 100 2 0
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3.3 Dispersion Model 

 All design points in the experiment which have replicate runs and an uncensored median 

life are incorporated in the dispersion model. The median absolute deviation (MAD) of the 

multiple observations at each of the applicable 22 design points, totaling 130 observations, is 

calculated using Equation 8, if all replications are uncensored, or estimated using mean order 

numbers (MON) as discussed below.  

 

 𝑌𝑘 = 𝑀𝐴𝐷{(𝑋𝑘1,𝑋𝑘2)} = 𝑚𝑒𝑑𝑖𝑎𝑛|𝑇𝑛𝑘 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑇𝑛𝑘)|    (8) 

 

where 𝑇𝑛𝑘 is the life of each of the replicates at the k-th point in the design space. 

 If any of the observations obtained at a given design point are censored, the median 

absolute deviation is estimated using mean order numbers (Kececioglu, 1993). Table 3 provides 

a specific example from the data at the design point (399.998, 40). A censor code of 0 indicates a 

true absolute deviation from the median life and a censor code of 1 indicates a censored absolute 

deviation. The mean order numbers of all uncensored observations calculated using 

combinatorics and their associated mean rank positions are provided. The deviation estimation 

with the associated mean rank position of 0.5 is estimated using lognormal probability plotting 

and fitting. 
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Table 3. Mean order numbers example. 

 

A regression equation of the general form 

 log𝑌𝑘 =  𝜆0 + ∑ 𝜆1𝑗𝑋𝑘𝑗2
𝑗=1 + ∑ 𝜆2𝑗(𝑋𝑘𝑗 − 𝑋𝚥� )22

𝑗=1 +  𝜆3(𝑋𝑘1 − 𝑋1���)(𝑋𝑘2 − 𝑋2���) +  𝜀𝑖 

            (9) 

where the  𝜆’s are parameters, 𝑋’s are known constants and centered in the non-linear terms , and 

the 𝜀𝑖 are assumed independent and normally distributed with an expected value of 0 and a 

constant variance, is fit to this calculated data using ordinary least squares. All 𝜆-parameters are 

tested for significance and all terms with 𝜆-parameters not significantly different than zero are 

removed.  

The resulting estimated model is 

 

log𝑌𝑘 = 21.401688 − 0.005126𝑋𝑘1 − 0.141388𝑋𝑘2 + 0.0012652(𝑋𝑘2 − 72.5)2 

            (10) 

 

Table 4 gives the summary of fit of the model in Equation 10, and Table 5 provides the 

results of the tests of significance for the model’s 𝜆-parameters. Figure 2 gives a surface plot of 

the model, in log cycles. 

Censor Temperature (F) Stress (ksi) Cycles Absolute Deviation MON Mean Rank Position 
0 399.998 40 179000 6796000 6.5 0.596153846
0 399.998 40 188000 6787000 5.375 0.487980769
0 399.998 40 339000 6636000 4.25 0.379807692
0 399.998 40 1030000 5945000 3.125 0.271634615
0 399.998 40 5470000 1505000 1.5 0.115384615
0 399.998 40 8480000 1505000 1.5 0.115384615
1 399.998 40 10000000 3025000
1 399.998 40 10000000 3025000
1 399.998 40 10000000 3025000
1 399.998 40 10000000 3025000
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Table 4. Summary of fit of dispersion model. 

 

Table 5. Tests of significance for dispersion model. 

 

 

Figure 2. Surface plot of dispersion model in Equation 10. 

 

 Prior to drawing inferences with the model, diagnostics are used to ensure there is no 

violation of the assumption of the errors being normally distributed with an expected value of 0 
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and a constant variance. Figure 3 shows a histogram and normal quantile plot of the residuals of 

our model. The Shapiro-Wilk test calculates a p-value of 0.9634 under the null hypothesis of the 

residuals being from the normal distribution. Therefore, the null is not rejected and the 

conclusion is residuals are sufficiently normally distributed. 

 

 

Figure 3. Normality plots of residuals of dispersion model. 

 

Figure 2 shows a plot of the model raw residuals against the predicted values. Visually, 

there does not appear to be any violation of the assumption of the constancy of error variance. 

The Breusch-Pagan test calculates a p-value of 0.2092 under the null hypothesis of constant error 

variance. Therefore, we do not reject the null and conclude the residuals of this model have a 

sufficiently constant error variance. 
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Figure 4. Plot of residuals of dispersion model. 

3.4 Life Model 

In order to build a dual-response model to output an expected life and expected deviation 

at any design setting, a predictive life model is developed using failure-time regression. This 

model is used to determine the adequacy of the dispersion model in Equation 10. Ultimately, the 

life model can be replaced by a preferred model built from non-empirical methods. 

One-hundred forty-nine observations in the design space of the dispersion model, 

censored and uncensored, are used in the development of the failure-time regression model. A 

location-scale (or log-location-scale) probability distribution is developed as 

 

 Pr(𝑇𝑖 ≤ 𝑡) =  𝐹(𝑡: 𝜇,𝜎) =  𝛷(𝑔(𝑡)−𝜇
𝜎

)      (11) 

 

where 𝑇𝑖 is the cycles to failure of a test sample, 𝛷 determines the distribution at a specific 

design point (normal or smallest-extreme-value, for example), g(t) is a transformation of the 

failure time (logarithmic, for example), and 𝜇,𝜎 are parametric equations given below.  
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 𝜇𝑖 = 𝛽0 +  ∑ 𝛽1𝑗𝑋𝑖𝑗2
𝑗=1 + ∑ 𝛽2𝑗(𝑋𝑖𝑗 − 𝑋𝚥� )22

𝑗=1 +  ∑ 𝛽3𝑗(𝑋𝑖𝑗 − 𝑋𝚥� )32
𝑗=1 +  𝛽4(𝑋𝑖1 −

𝑋1���)(𝑋𝑖2 − 𝑋2���) +  𝜀𝑖           (12) 

 𝜎𝑖 = 𝜆0 +  ∑ 𝜆1𝑗𝑋𝑖𝑗2
𝑗=1 +  ∑ 𝜆2𝑗(𝑋𝑖𝑗 − 𝑋𝚥� )22

𝑗=1 + 𝜆3(𝑋𝑖1 − 𝑋1���)(𝑋𝑖2 − 𝑋2���) +  𝜀𝑖  

            (13) 

  

The parameters in these equations are determined by Maximum Likelihood Estimation 

(MLE) methods and tested for significance. The specific distribution used is selected from 

lognormal, Weibull, or loglogistic (all of which require a log-transformation of the failure time), 

or exponential, and are determined using Akaike’s Information Criterion (AIC).  

 According to the AIC measure, the lognormal distribution is a better fit than the Weibull, 

loglogistic, and exponential. The fitted failure time model is 

 

 Pr(𝑇𝑖 ≤ 𝑡) =  𝐹(𝑡: 𝜇,𝜎) =  𝛷𝑛𝑜𝑟(log( 𝑡)−𝜇
𝜎

)      (14) 

 

where 

 

 𝜇𝑖 = 21.3916067 − 0.0036379𝑋𝑖1 − 0.1362854𝑋𝑖2 + 0.00151119(𝑋𝑖2 −

58.2282)2 − 0.0000072563(𝑋𝑖2 − 58.2282)3      (15) 

 𝜎𝑖 = 3.63707445 − 0.0015742𝑋𝑖1 − 0.0237341𝑋𝑖2    (16) 

 

is determined using MLE. The results of the likelihood ratio tests for the coefficients in 

Equations 15 and 16 are given in Table 6. Figure 5 provides a surface plot of the life predictions, 

in log cyclies, given by Equation 15. 
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Table 6. Tests of significance for life model. 

 

 
Figure 5. Surface plot of life model in Equation 15. 

 
Prior to drawing any inferences on this model, diagnostics are used to ensure there is no 

violation of the assumption of lognormally distributed errors. Figure 6 gives the lognormal 

quantile plot of the standardized residuals of the model. The Kolmogorov’ D goodness-of-fit test 

calculates a p-value greater than 0.15 under the null hypothesis of the Cox –Snell residuals being 

from the lognormal distribution. Therefore, the null is not rejected and the conclusion is the 

residuals are sufficiently lognormally distributed. 
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Figure 6. Lognormal quantile plot of residuals of life model. 
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4.  Results and Analysis 

 
4.1 Dual-Response Model 

 
 To determine the adequacy of our dispersion model, the expected deviation estimated by 

the dispersion model Equation 10 is examined in relationship to the median residuals produced 

by the life model in Equation 15. This is accomplished by ensuring the dispersion model is not 

consistently overestimating or underestimating deviation, determining measures of association 

between the two values at each design point, and examining the ability of the confidence 

intervals produced by our dispersion model to capture the median deviation at each design point. 

These tasks are done both for data at design settings with replicates and without replicates. Table 

7 below provides the values to accomplish this testing for the data at design settings with 

replicates, where life and deviation values are given in cycles. 

 

Table 7. Actual and expected deviations observations in both models. 

 

Temperature (F) Stress (ksi) Expected Life Median Residual Life Expected Deviation Lower 95% Expected Upper 95% Expected
69.9993 60 427000.272 308000.272 347084.948 126046.575 955741.646
69.9993 65 229912.800 90500.000 150823.615 55850.434 407297.873
69.9993 70 132529.408 53029.408 69819.474 26120.300 186627.220
69.9993 80 52868.711 71131.289 18088.894 6865.222 47661.691
69.9993 135 4280.893 1335.000 990.088 225.877 4339.859
69.9993 140 3620.027 726.000 1111.252 201.869 6117.225
399.998 40 3372363.281 4150500.000 3376208.869 1332964.266 8551456.791
399.998 50 556018.635 525018.635 409431.069 205633.614 815206.218
399.998 55 256983.705 159983.705 156771.472 82825.178 296736.995
399.998 60 128547.301 91547.301 63947.996 34180.193 119640.816
399.998 70 39897.627 78102.373 12863.754 6599.236 25075.051
399.998 90 7812.935 3027.500 1112.073 521.853 2369.837
399.998 100 4518.362 2295.638 477.923 219.233 1041.863
399.998 110 2947.310 1397.310 264.532 114.631 610.456

800 30 6991053.980 3008946.021 4614552.041 1290557.955 16499910.338
800 35 2230278.896 2060278.896 1371895.828 468023.169 4021378.185
800 40 786993.053 414993.053 434496.603 172189.886 1096390.169
800 45 305502.178 186502.178 146597.073 63921.390 336205.171
800 50 129755.535 89755.535 52691.174 23943.576 115954.266
800 80 3714.241 3632.000 428.904 151.799 1211.861
800 90 1823.269 82.000 143.117 46.855 437.140
800 100 1054.430 4.500 61.506 18.918 199.967
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To ensure the dispersion model is not consistently overestimating or underestimating the 

deviation, the differences between the median residual life and expected deviation are examined. 

If the model is not consistently overestimating or underestimating the deviation, these 

differences will have an expected value of zero. Table 8 provides the test statistics and associated 

p-values for the Fisher Sign Test and the Wilcoxen Signed Rank Test for the paired data in Table 

7. In addition, Spearman rank correlation and Pearson correlation values are given as measures 

of association for this paired data. The given p-values under the null hypothesis of a median 

difference of zero indicate the null is not rejected and the conclusion is there is sufficient 

evidence the median difference is zero. Hence, the dispersion model is shown to neither 

consistently overestimate nor underestimate the deviation. 

 

Table 8. Verification tests for dispersion model. 

 

 

In addition the strong measures of association between our actual and expected deviation, 

it is observed from Table 7 the dispersion model is capturing the actual deviation in the 95% 

confidence intervals at 15 of the 22 design points. 

To further examine the adequacy of the dispersion model, the same testing is done on 

observations at design settings without replicates. Table 9 below provides the values to 

accomplish this testing on the validation data. 

 

Tests Fisher Wilcoxen Spearman Pearson
Statistic 14 172 0.9548278 0.935299697
P-Value 0.118594 0.1396



31 
 

Table 9. Actual and expected deviations observations in life model only. 

 

 

Table 10 provides the test statistics and associated p-values for the Fisher Sign Test and 

the Wilcoxen Signed Rank Test, and measures of association for the paired data in Table 9. The 

given p-values under the null hypothesis of a median difference of zero indicate the null is not 

rejected and the conclusion is there is sufficient evidence the median difference is zero. Hence, 

the dispersion model is shown to neither consistently overestimate nor underestimate the 

deviation for this validation data and maintains a strong measure of association. 

 

Table 10. Validation tests for dispersion model. 

 

 In addition the strong measures of association between our actual and expected deviation, 

it is observed from Table 9 the dispersion model is capturing the actual deviation in the 95% 

confidence intervals at all 13 of the 13 design points. 

 

Temperature (F) Stress (ksi) Expected Life Residual Life Expected Deviation Lower 95% Expected Upper 95% Expected
69.9993 120 6896.132 965.868 1023.434 78.561 13334.971
69.9993 130 5022.060 3335.940 939.642 64.316 13730.902
399.998 80 15915.986 484.014 3332.326 284.455 39047.513
399.998 85 10895.417 2297.583 1864.980 158.260 21983.235
399.998 105 3604.545 962.545 344.442 28.715 4132.857

800 36 1796608.855 1018608.855 1084340.689 82786.923 14208585.432
800 37 1453050.796 4796949.204 859409.066 66460.225 11117803.317
800 46 255615.277 207615.277 118839.212 9849.940 1434386.674
800 60 29998.498 16998.498 8227.977 679.603 99658.154
800 70 9310.727 14689.273 1655.131 131.654 20816.951
800 75 5714.567 565.433 816.229 63.603 10479.371
800 77 4778.416 2281.416 626.177 48.407 8103.471
800 85 2542.614 841.386 239.990 18.028 3196.096

Tests Fisher Wilcoxen Spearman Pearson
Statistic 9 69 0.71978 0.734998
P-Value 0.1571 0.0636



32 
 

4.2 Bayesian Extension of Dual-Response Model 

Although the data are assumed lognormal, the deviation estimate provided by Equations 

15 and 16 consistently over-estimate residual values across the design space, reinforcing the need 

for a separate model to investigate dispersion in the data as in Equation 10. The Bayesian 

extension of this research modifies Equations 15 and 16 as described below to develop the dual 

response model simultaneously 

- A fourth term is added to the scale parameter equation, similar to the dispersion 

model in Equation 10 (X2
2 centered) 

- Predictive variables are centered in all terms to allow for smoother MCMC 

approximation 

 

The failure-time regression model for this Bayesian analysis is 

Pr(𝑇𝑖 ≤ 𝑡) =  𝐹(𝑡: 𝜇,𝜎) =  𝛷𝑛𝑜𝑟(log( 𝑡)−𝜇
𝜎

)       

where 

 𝜇 = 𝛽1 + 𝛽2(𝑋1 − 512.482) + 𝛽3(𝑋2 − 58.2282) + 𝛽4(𝑋2 − 58.2282)2 +

𝛽5(𝑋2 − 58.2282)3          (17)  

 𝜎 = 𝜆1 − 𝜆2(𝑋1 − 512.482) − 𝜆3(𝑋2 − 58.2282) + 𝜆4(𝑋2 − 58.2282)2  (18) 

 

All parameters are assigned a prior distribution of Normal (0, 10,000), and all are 

assigned an initial value of 0, with the exception of 𝜆1 which has an initial value of 1, so we have 

a positive variance value for our distribution to begin. 

The MCMC uses 1,025,000 iterations, with a burn-in of 25,000 and a thinning of 1,000 to 

reduce autocorrelation. 
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 Table 11 below provides median values and 95% probability intervals for the posterior 

distributions of the model parameters, in addition the value determined by the frequentist 

approach in Equations 15 and 10. The intercepts are not included, as their values will inherently 

differ due to the centering of data prior to model building. 

Table 11. Comparison of Bayesian and frequentist parameters 

 

 The Bayesian extension can be used to build a predictive distribution for 𝑇𝑘 at a given 

design point k of interest. From this distribution, the MAD calculation from Equation 8 could be 

used determine the predicted deviation at k, in addition to the median predicted life. This 

approach is also able to include prior information from scientific experts or previous testing and 

to serve as a model for future testing using Bayesian updating. 

4.3 Simplified Extension of Dual-Response Model 

 Due to the similarity in parameter estimates of our dispersion and life models, as 

indicated in Table 11 and the surface plots in Figures 2 and 5, a linear regression model is 

developed, where expected log life values from Equation 15 are the response, and expected log 

deviations values from Equation 10 are the single predictor variable. Table 12 provides estimates 

and tests of significance for the equation’s parameters, and Table 13 provides the summary of fit 

for the equation. Figure 7 provides a plot of the expected log deviation versus expected log life. 

Parameter Frequentist Value Median of Posterior Lower 95% Posterior Upper 95% Posterior

β2 -0.0036379 -0.0042895 -0.0054391 -0.0030979

β3 -0.1362854 -0.1581 -0.1756 -0.1421975

β4 0.00151119 0.0016035 0.0009184 0.0024491

β5 -0.00000726 -0.00000663 -0.0000655 -0.000000682

λ2 -0.005126 -0.0042895 -0.005439 -0.003098

λ3 -0.141388 -0.1581 -0.1756 -0.1422
λ4 0.0012652 0.0016035 0.000918 0.00245
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Table 12. Equation parameter estimates. 

 

Table 13. Summary of fit for simplified extension equation. 

 

 

 

Figure 7. Plot for simplifed extension. 
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5.  Discussion 

 

Uncertainty is inherent in any form of statistical analysis and is frequently under-

emphasized or not sufficiently examined (Thacker, et al. 2001). Investigating and quantifying 

uncertainty is complex, and capturing dispersion in data is regularly a secondary objective after 

determining mean response behavior, such as time-to-failure estimation. However, any 

predictive mean or life function must consider variance in the data to discuss adequacy of the 

predictive ability. Although model assumptions and associated diagnostics exist to address this 

need, remedial measures and entirely separate modeling efforts have been established and are 

often necessary. 

 This work develops a model to capture dispersion in fatigue life data separate from a 

mean life model. The model uses a robust measure for calculating deviation at individual design 

points, allowing for the incorporation of censored data, and builds a regression model for 

capturing trends across the design space. Nonparametric testing addresses the adequacy of the 

dispersion model by comparing results with residuals of a predictive life model. Diagnostics, 

both quantitative and qualitative, are utilized for the dispersion model and predictive life model. 

A Bayesian extension of the model allows for predictive life and deviation estimations through 

sampling predictive distributions. 

 This work is limited by the lack of elaboration and balance in the test design, the inability 

to incorporate nominal predictive variables, and the significant amount of highly influential 

points in the data. Future work should address these limitations and develop the Bayesian and 

simplified extensions of the models. 
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